Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Sci Rep ; 11(1): 22214, 2021 11 15.
Article in English | MEDLINE | ID: covidwho-1517639

ABSTRACT

Rapid nucleic-acid based tests that can be performed by non-professionals outside laboratory settings could help the containment of the pandemic SARS-CoV-2 virus and may potentially prevent further widespread lockdowns. Here, we present a novel compact portable detection instrument (the Egoo Health System) for extraction-free detection of SARS-CoV-2 using isothermal reverse transcription strand invasion based amplification (RT-SIBA). The SARS-CoV-2 RT-SIBA assay can be performed directly on crude oropharyngeal swabs without nucleic acid extraction with a reaction time of 30 min. The Egoo Health system uses a capsule system, which is automatically sealed tight in the Egoo instrument after applying the sample, resulting in a closed system optimal for molecular isothermal amplification. The performance of the Egoo Health System is comparable to the PCR instrument with an analytical sensitivity of 25 viral RNA copies per SARS-CoV-2 RT-SIBA reaction and a clinical sensitivity and specificity between 87.0-98.4% and 96.6-98.2% respectively.


Subject(s)
COVID-19/diagnosis , COVID-19/epidemiology , Equipment Design , Molecular Diagnostic Techniques/instrumentation , Molecular Diagnostic Techniques/methods , Pandemics/prevention & control , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , COVID-19/virology , Cell Phone , Humans , Mobile Applications , Oropharynx/virology , Point-of-Care Testing , Polymorphism, Single Nucleotide , RNA, Viral/genetics , Retrospective Studies , Sensitivity and Specificity
2.
PLoS One ; 16(10): e0257834, 2021.
Article in English | MEDLINE | ID: covidwho-1468159

ABSTRACT

COVID-19 testing is required before admission of a patient in the hospitals, invasive procedures, major and minor surgeries etc. Real Time Polymerase chain reaction is the gold standard test for the diagnosis, but requires well equipped biosafety laboratory along with trained manpower. In this study we have evaluated the diagnostic accuracy of novel TrueNat molecular assay for detecting SARS CoV-2. TrueNat is a chip-based real time PCR test and works on portable, light weight, battery powered equipment and can be used in remote areas with poor infrastructure. In this study 1807 patients samples were collected for both TrueNat and RTPCR COVID-19 testing during study period. Of these 174 (9.7%) and 174 (15%) were positive by RTPCR and TrueNat respectively and taking results of RTPCR as gold standard TrueNat test showed a sensitivity, specificity and diagnostic accuracy of 69.5, 90.9% and 89.2% respectively. It can be concluded that TrueNat is a simple, easy to use, good rapid molecular diagnostic test for diagnosis of COVID-19 especially in resource limited settings and will prove to be a game changer of molecular diagnostics in future.


Subject(s)
COVID-19/diagnosis , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Testing , Humans , Point-of-Care Systems , Real-Time Polymerase Chain Reaction/instrumentation , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , SARS-CoV-2/isolation & purification , Sensitivity and Specificity
3.
PLoS One ; 16(7): e0252509, 2021.
Article in English | MEDLINE | ID: covidwho-1388919

ABSTRACT

The current global pandemic due to the SARS-CoV-2 has pushed the limits of global health systems across all aspects of clinical care, including laboratory diagnostics. Supply chain disruptions and rapidly-shifting markets have resulted in flash-scarcity of commercial laboratory reagents; this has motivated health care providers to search for alternative workflows to cope with the international increase in demand for SARS-CoV-2 testing. The aim of this study is to present a reproducible workflow for real time RT-PCR SARS-CoV-2 testing using OT-2 open-source liquid-handling robots (Opentrons, NY). We have developed a framework that includes a code template which is helpful for building different stand-alone robotic stations, capable of performing specific protocols. Such stations can be combined together to create a complex multi-stage workflow, from sample setup to real time RT-PCR. Using our open-source code, it is easy to create new stations or workflows from scratch, adapt existing templates to update the experimental protocols, or to fine-tune the code to fit specific needs. Using this framework, we developed the code for two different workflows and evaluated them using external quality assessment (EQA) samples from the European Molecular Genetics Quality Network (EMQN). The affordability of this platform makes automated SARS-CoV-2 PCR testing accessible for most laboratories and hospitals with qualified bioinformatics personnel. This platform also allows for flexibility, as it is not dependent on any specific commercial kit, and thus it can be quickly adapted to protocol changes, reagent, consumable shortages, or any other temporary material constraints.


Subject(s)
COVID-19 Nucleic Acid Testing/instrumentation , SARS-CoV-2/isolation & purification , Clinical Coding , Early Diagnosis , Humans , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/instrumentation , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , Robotics , SARS-CoV-2/genetics , Workflow
4.
J Clin Microbiol ; 59(5)2021 04 20.
Article in English | MEDLINE | ID: covidwho-1121790

ABSTRACT

Combating the ongoing coronavirus disease 2019 (COVID-19) pandemic demands accurate, rapid, and point-of-care testing with fast results to triage cases for isolation and treatment. The current testing relies on reverse transcriptase PCR (RT-PCR), which is routinely performed in well-equipped laboratories by trained professionals at specific locations. However, during busy periods, high numbers of samples queued for testing can delay the test results, impacting efforts to reduce the infection risk. Besides, the absence of well-established laboratories at remote sites and low-resourced environments can contribute to a silent spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). These reasons compel the need to accommodate point-of-care testing for COVID-19 that meets the ASSURED criteria (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free, and deliverable). This study assessed the agreement and accuracy of the portable Biomeme SARS-CoV-2 system against the gold standard tests. Nasopharyngeal and nasal swabs were used. Of the 192 samples tested using the Biomeme SARS-CoV-2 system, the results from 189 samples (98.4%) were in agreement with the reference standard-of-care RT-PCR testing for SARS-CoV-2. The portable system generated simultaneous results for nine samples in 80 min with high positive and negative percent agreements of 99.0% and 97.8%, respectively. We performed separate testing in a sealed glove box, offering complete biosafety containment. Thus, the Biomeme SARS-CoV-2 system can help decentralize COVID-19 testing and offer rapid test results for patients in remote and low-resourced settings.


Subject(s)
COVID-19 Nucleic Acid Testing/instrumentation , COVID-19/diagnosis , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , Humans , SARS-CoV-2 , Sensitivity and Specificity
5.
Jpn J Infect Dis ; 74(1): 29-34, 2021 Jan 22.
Article in English | MEDLINE | ID: covidwho-1049199

ABSTRACT

The disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in Wuhan, China, in December 2019, has rapidly spread worldwide. SARS-CoV-2 is usually detected via real-time reverse-transcription polymerase chain reaction (RT-PCR). However, the increase in specimen load in institutions/hospitals necessitates a simpler detection system. Here, we present an ultra-rapid, real-time RT-PCR assay for SARS-CoV-2 detection using PCR1100 device. Although PCR1100 tests only one specimen at a time, the amplification period is less than 20 min and the sensitivity and specificity match those of conventional real-time RT-PCR performed on large instruments. The method is potentially helpful when daily multiple SARS-CoV-2 testing is needed, for example to confirm virus-free status prior to patient discharge.


Subject(s)
COVID-19 Testing/instrumentation , COVID-19/virology , Real-Time Polymerase Chain Reaction/instrumentation , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , SARS-CoV-2/isolation & purification , COVID-19 Testing/methods , Humans , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Sensitivity and Specificity
7.
Talanta ; 224: 121850, 2021 Mar 01.
Article in English | MEDLINE | ID: covidwho-919513

ABSTRACT

In detecting infectious diseases, such as coronavirus 2019 (COVID-19), real-time reverse-transcription polymerase chain reaction (RT-PCR) is one of the most important technologies for RNA detection and disease diagnosis. To achieve high quality assurance, appropriate positive and negative controls are critical for disease detection using RT-PCR kits. In this study, we have found that commercial kits often adopt DNAs instead of RNAs as the positive controls, which can't report the kit problems in reverse transcription, thereby increasing risk of the false negative results when testing patient samples. To face the challenge, we have proposed and developed the chemically modified RNAs, such as phosphoroselenaote and phosphorothioate RNAs (Se-RNA and S-RNA), as the controls. We have found that while demonstrating the high thermostability, biostability, chemostability and exclusivity (or specificity), both Se-RNA and S-RNA can be fine templates for reverse transcription, indicating their potentials as both positive and negative controls for RT-PCR kits.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , RNA, Viral/analysis , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , COVID-19 Nucleic Acid Testing/instrumentation , DNA, Viral/analysis , False Negative Reactions , Humans , RNA Stability , RNA, Viral/chemistry , Reagent Kits, Diagnostic , Real-Time Polymerase Chain Reaction/instrumentation , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , SARS-CoV-2/genetics
8.
Biosens Bioelectron ; 170: 112656, 2020 Dec 15.
Article in English | MEDLINE | ID: covidwho-797526

ABSTRACT

Point-of-care risk assessment (PCRA) for airborne viruses requires a system that can enrich low-concentration airborne viruses dispersed in field environments into a small volume of liquid. In this study, airborne virus particles were collected to a degree above the limit of detection (LOD) for a real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). This study employed an electrostatic air sampler to capture aerosolized test viruses (human coronavirus 229E (HCoV-229E), influenza A virus subtype H1N1 (A/H1N1), and influenza A virus subtype H3N2 (A/H3N2)) in a continuously flowing liquid (aerosol-to-hydrosol (ATH) enrichment) and a concanavalin A (ConA)-coated magnetic particles (CMPs)-installed fluidic channel for simultaneous hydrosol-to-hydrosol (HTH) enrichment. The air sampler's ATH enrichment capacity (EC) was evaluated using the aerosol counting method. In contrast, the HTH EC for the ATH-collected sample was evaluated using transmission-electron-microscopy (TEM)-based image analysis and real-time qRT-PCR assay. For example, the ATH EC for HCoV-229E was up to 67,000, resulting in a viral concentration of 0.08 PFU/mL (in a liquid sample) for a viral epidemic scenario of 1.2 PFU/m3 (in air). The real-time qRT-PCR assay result for this liquid sample was "non-detectable" however, subsequent HTH enrichment for 10 min caused the "non-detectable" sample to become "detectable" (cycle threshold (CT) value of 33.8 ± 0.06).


Subject(s)
Biosensing Techniques/instrumentation , Coronavirus 229E, Human/isolation & purification , Coronavirus Infections/virology , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza, Human/virology , Aerosols/analysis , Air Microbiology , Biosensing Techniques/economics , Coronavirus 229E, Human/genetics , Environmental Monitoring/economics , Environmental Monitoring/instrumentation , Equipment Design , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , Time Factors
9.
Proc Natl Acad Sci U S A ; 117(37): 22727-22735, 2020 09 15.
Article in English | MEDLINE | ID: covidwho-738036

ABSTRACT

The COVID-19 pandemic provides an urgent example where a gap exists between availability of state-of-the-art diagnostics and current needs. As assay protocols and primer sequences become widely known, many laboratories perform diagnostic tests using methods such as RT-PCR or reverse transcription loop mediated isothermal amplification (RT-LAMP). Here, we report an RT-LAMP isothermal assay for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and demonstrate the assay on clinical samples using a simple and accessible point-of-care (POC) instrument. We characterized the assay by dipping swabs into synthetic nasal fluid spiked with the virus, moving the swab to viral transport medium (VTM), and sampling a volume of the VTM to perform the RT-LAMP assay without an RNA extraction kit. The assay has a limit of detection (LOD) of 50 RNA copies per µL in the VTM solution within 30 min. We further demonstrate our assay by detecting SARS-CoV-2 viruses from 20 clinical samples. Finally, we demonstrate a portable and real-time POC device to detect SARS-CoV-2 from VTM samples using an additively manufactured three-dimensional cartridge and a smartphone-based reader. The POC system was tested using 10 clinical samples, and was able to detect SARS-CoV-2 from these clinical samples by distinguishing positive samples from negative samples after 30 min. The POC tests are in complete agreement with RT-PCR controls. This work demonstrates an alternative pathway for SARS-CoV-2 diagnostics that does not require conventional laboratory infrastructure, in settings where diagnosis is required at the point of sample collection.


Subject(s)
Coronavirus Infections/diagnosis , Molecular Diagnostic Techniques/methods , Pneumonia, Viral/diagnosis , Point-of-Care Testing/standards , Reverse Transcriptase Polymerase Chain Reaction/methods , Betacoronavirus/genetics , Betacoronavirus/pathogenicity , COVID-19 , Humans , Limit of Detection , Molecular Diagnostic Techniques/instrumentation , Molecular Diagnostic Techniques/standards , Nasal Mucosa/virology , Pandemics , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , Reverse Transcriptase Polymerase Chain Reaction/standards , SARS-CoV-2 , Smartphone
10.
Life Sci ; 258: 118207, 2020 Oct 01.
Article in English | MEDLINE | ID: covidwho-696173

ABSTRACT

Due to COVID 19 outbreak many studies are being conducted for therapeutic strategies and vaccines but detection methods play an important role in the containment of the disease. Hence, this systematic review aims to evaluate the effectiveness of the molecular detection techniques in COVID-19. For framing the systematic review 6 literature databases (PubMed, EMBASE, OVID, Web of Science, Scopus and Google Scholar) were searched for relevant studies and articles were screened for relevant content till 25th April 2020. Observations from this systematic review reveal the utility of RT-PCR with serological testing as one such method cannot correlate with accurate results. Availability of point of care devices do not conform to sensitivity and specificity in comparison to the conventional methods due to lack of clinical investigations. Pivotal aim of molecular and serological research is the development of detection methods that can support the clinical decision making of patients suspected with SARS-CoV-2. However, none of the methods were 100% sensitive and specific; hence additional studies are required to overcome the challenges addressed here. We hope that the present article with its observations and suggestions will assist the researchers to realize this vision in future.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/instrumentation , Clinical Laboratory Techniques/methods , Coronavirus Infections/blood , Humans , Pandemics , Pneumonia, Viral/blood , Point-of-Care Testing , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2 , Sensitivity and Specificity
11.
Biosens Bioelectron ; 165: 112454, 2020 Oct 01.
Article in English | MEDLINE | ID: covidwho-651785

ABSTRACT

The rapidly spreading outbreak of COVID-19 disease is caused by the SARS-CoV-2 virus, first reported in December 2019 in Wuhan, China. As of June 17, 2020, this virus has infected over 8.2 million people but ranges in symptom severity, making it difficult to assess its overall infection rate. There is a need for rapid and accurate diagnostics to better monitor and prevent the spread of COVID-19. In this review, we present and evaluate two main types of diagnostics with FDA-EUA status for COVID-19: nucleic acid testing for detection of SARS-CoV-2 RNA, and serological assays for detection of SARS-CoV-2 specific IgG and IgM patient antibodies, along with the necessary sample preparation for accurate diagnoses. In particular, we cover and compare tests such as the CDC 2019-nCoV RT-PCR Diagnostic Panel, Cellex's qSARS-CoV-2 IgG/IgM Rapid Test, and point-of-care tests such as Abbott's ID NOW COVID-19 Test. Antibody testing is especially important in understanding the prevalence of the virus in the community and to identify those who have gained immunity. We conclude by highlighting the future of COVID-19 diagnostics, which include the need for quantitative testing and the development of emerging biosensors as point-of-care tests.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Immunoassay/methods , Pneumonia, Viral/diagnosis , Point-of-Care Testing , Reverse Transcriptase Polymerase Chain Reaction/methods , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , COVID-19 , Coronavirus Infections/blood , Humans , Immunoassay/instrumentation , Immunoglobulin G/analysis , Immunoglobulin G/blood , Immunoglobulin M/analysis , Immunoglobulin M/blood , Pandemics , Pneumonia, Viral/blood , RNA, Viral/analysis , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , SARS-CoV-2 , Specimen Handling/instrumentation , Specimen Handling/methods , United States , United States Food and Drug Administration
12.
Biosens Bioelectron ; 165: 112361, 2020 Oct 01.
Article in English | MEDLINE | ID: covidwho-617487

ABSTRACT

The recent outbreak of the coronavirus disease (COVID-19) has left the world clueless. As the WHO declares this new contagion as a pandemic on the 11th of March 2020, the alarming rate of the spawn of the disease in such a short period has disarranged the globe. Standing against this situation researchers are strenuously searching for the key traits responsible for this pandemic. As knowledge regarding the dynamics and host-path interaction of COVID-19 causing Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is currently unknown, the formulation of strategies concerning antiviral treatment, vaccination, and epidemiological control stands crucial. Before designing adequate therapeutic strategies, it is extremely essential to diagnose the disease at the outset as early detection can have a greater impact on building health system capacity. Hence, a comprehensive review of strategies for COVID-19 diagnosis is essential in this existing global situation. In this review, sequentially, we have provided the clinical details along with genetic and proteomic biomarkers related to COVID-19. The article systematically enlightens a clear overview of the clinically adopted techniques for the detection of COVID-19 including oligonucleotide-based molecular detection, Point-of-Care immunodiagnostics, radiographical analysis/sensing system, and newly developed biosensing prototypes having commercial viability. The commercial kits/analytical methods based-sensing strategies have also been tabulated categorically. The critical insights on the developer, commercial brand name, detection methods, technical operational details, detection time, clinical specimen, status, the limit of detection/detection ability have been discussed comprehensively. We believe that this review may provide scientists, clinicians and healthcare manufacturers valuable information regarding the most recent developments/approaches towards COVID-19 diagnosis.


Subject(s)
Betacoronavirus/isolation & purification , Biosensing Techniques/methods , Coronavirus Infections/diagnosis , Lab-On-A-Chip Devices , Pneumonia, Viral/diagnosis , Point-of-Care Testing , Animals , Antibodies, Immobilized/chemistry , Betacoronavirus/genetics , Biomarkers/analysis , Biosensing Techniques/instrumentation , COVID-19 , Clustered Regularly Interspaced Short Palindromic Repeats , Coronavirus Infections/blood , Coronavirus Infections/virology , Equipment Design , Humans , Immunoassay/instrumentation , Immunoassay/methods , Nanostructures/chemistry , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/virology , Radiographic Image Enhancement/instrumentation , Radiographic Image Enhancement/methods , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2
13.
Euro Surveill ; 25(24)2020 06.
Article in English | MEDLINE | ID: covidwho-605372

ABSTRACT

Containment strategies and clinical management of coronavirus disease (COVID-19) patients during the current pandemic depend on reliable diagnostic PCR assays for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we compare 11 different RT-PCR test systems used in seven diagnostic laboratories in Germany in March 2020. While most assays performed well, we identified detection problems in a commonly used assay that may have resulted in false-negative test results during the first weeks of the pandemic.


Subject(s)
Betacoronavirus/genetics , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Diagnostic Equipment , Pneumonia, Viral/diagnosis , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Clinical Laboratory Techniques/instrumentation , Feces/virology , Germany , Humans , Laboratories , Multiplex Polymerase Chain Reaction/instrumentation , Multiplex Polymerase Chain Reaction/methods , Pandemics , Real-Time Polymerase Chain Reaction/instrumentation , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2 , Sensitivity and Specificity
14.
J Med Virol ; 92(9): 1695-1698, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-209968

ABSTRACT

The urgent need to implement and rapidly expand testing for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection has led to the development of multiple assays. How these tests perform relative to one another is poorly understood. We evaluated the concordance between the Roche Diagnostics cobas 6800 SARS-CoV-2 test and a laboratory-developed test (LDT) real-time reverse transcription-polymerase chain reaction based on a modified Centers for Disease Control and Prevention protocol, for the detection of SARS-CoV-2 in samples submitted to the Clinical Laboratories of the Mount Sinai Health System. A total of 1006 nasopharyngeal swabs in universal transport medium from persons under investigation were tested for SARS-CoV-2 as part of routine clinical care using the cobas SARS-CoV-2 test with subsequent evaluation by the LDT. Cycle threshold values were analyzed and interpreted as either positive ("detected" or "presumptive positive"), negative (not detected), inconclusive, or invalid. Statistical analysis was performed using GraphPad Prism 8. The cobas SARS-CoV-2 test reported 706 positive and 300 negative results. The LDT reported 640 positive, 323 negative, 34 inconclusive, and 9 invalid results. When excluding inconclusive and invalid results, the overall percent agreement between the two platforms was 95.8%. Cohen's κ coefficient was 0.904 (95% confidence interval, 0.875-0.933), suggesting almost perfect agreement between both platforms. An overall discordance rate of 4.2% between the two systems may reflect differences in primer sequences, assay limit of detection, or other factors, highlighting the importance of comparing the performance of different testing platforms.


Subject(s)
COVID-19/diagnosis , COVID-19/virology , Nasopharynx/virology , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/classification , SARS-CoV-2/genetics , Humans , RNA, Viral , Reagent Kits, Diagnostic , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/isolation & purification , Sensitivity and Specificity
15.
J Clin Virol ; 128: 104390, 2020 07.
Article in English | MEDLINE | ID: covidwho-133461

ABSTRACT

BACKGROUND: The ongoing SARS-CoV-2 pandemic presents a unique challenge for diagnostic laboratories around the world. Automation of workflows in molecular diagnostics is instrumental for coping with the large number of tests ordered by clinicians, as well as providing fast-tracked rapid testing for highly urgent cases. In this study we evaluated a SARS-CoV-2 LDT for the NeuMoDx 96 system, a fully automated device performing extraction and real-time PCR. METHODS: A publicly available SARS-CoV-2 RT-PCR assay was adapted for the automated system. Analytical performance was evaluated using in-vitro transcribed RNA and clinical performance was compared to the cobas 6800-based reference assay within the lab. RESULTS: The Envelope (E) Gene-LDT displayed good analytical performance with an LoD of 95.55 cp/mL and no false positives during evaluation of cross-reactivity. A total of 176 patient samples were tested with both the E-Gene-LDT and the reference assay. Positive and negative agreement were 100 % and 99.2 % respectively. Invalid-rate was 6.3 %. CONCLUSION: The E-Gene-LDT showed analytical and clinical performance comparable to the cobas6800-based reference assay. Due to its random-access workflow concept and rapid time-to-result of about 80 min, the system is very well suited for providing fast-tracked SARS-CoV-2 diagnostics for urgent clinical samples in the hospital setting.


Subject(s)
Clinical Laboratory Techniques/methods , Pandemics , Reverse Transcriptase Polymerase Chain Reaction/methods , Betacoronavirus , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Clinical Laboratory Techniques/instrumentation , Coronavirus Infections/diagnosis , Hospitals , Humans , Pneumonia, Viral , Real-Time Polymerase Chain Reaction/instrumentation , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/instrumentation , SARS-CoV-2 , Time Factors , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL